In my early childhood I developed a strong interest in the marine ecosystem, spending much of my free time in my grandfather’s library and going through every marine journal I could find there. I didn’t know it at the time, but those days left a mark on me. A couple of years later, on my first diving trip in the Caribbean, I realised that I wanted to become a marine biologist. Although cephalopods were my first love, when I started working with elasmobranchs I fell in love with them too. My first experience with shark and ray research and conservation projects was as an undergraduate student, when I participated in setting up the initial basic guidelines for the development of the Shark National Action Plan in Chile. Since then I have had the opportunity to work with great researchers on different projects relating to biodiversity, reproductive biology, feeding behaviour and photo-ID. All of them were on common shark and ray species in Chile.
Currently I am doing my PhD in collaboration with the first research group on Easter Island, the Ecology and Sustainable Management of Oceanic Islands (ESMOI). My thesis will concentrate on species biodiversity, migratory patterns and population genetics of top predators in the Easter Island eco-region, including the large population of Galápagos sharks Carcharhinus galapagensis in the area. Working on the ESMOI project gives me the opportunity to collaborate with the local community to help protect one of the most isolated and valuable areas in the world.
Working on Easter Island, home to the monumental stone statues known as moai and beautiful landscapes protected by UNESCO as a World Heritage Site, could well make me the luckiest marine biologist in Chile.
Located in the middle of the Pacific Ocean, Easter Island – also known by its Polynesian name Rapa Nui, or Isla de Pascua in Spanish – is one of the most isolated inhabited islands in the world. It harbours the eastern coral systems of Polynesia, known for colourful fishes and high levels of endemism. However, the environmental conditions of this region make it highly susceptible to global climate change and anthropogenic activities.
Big fish assemblages are now scarce around the island. We assume that the number of fish communities were already starting to drop at the time of the ancient fishery, when the island was fully populated. Today, with modern fishing methods and an increasing number of tourists, the risk of overfishing is even higher. The big challenge facing Easter Island is to achieve sustainable fisheries but still conserve its unique marine biodiversity. Therefore, we need to acquire substantial scientific knowledge about the biology and population dynamics of the species inhabiting the area if we are to create new and effective regulations.
Baited Remote Underwater Video Stations (BRUVS) technology enables scientists to observe fish in hard-to-reach habitats and fishing-free or even threatened areas. At these fixed stations, bait is used to attract fishes and the cameras then record not only the individuals attracted to the bait, but also those that just swim in front of the lens.
By using the BRUVS, we aim to describe the pelagic species inhabiting the waters around Easter Island, their abundance and their use of habitat, including ancestral fishing zones. Thanks to the SOSF, we will carry out the first study of top predators on Easter Island using non-destructive methodology. This project seeks to fill the gaps in our knowledge in order to create marine parks with effective boundaries and to develop realistic recommendations for the correct management and conservation of the local biodiversity. We also believe that this biodiversity can be used to enhance ecotourism and help local inhabitants to shift from non-sustainable practices (overfishing) to a broader array of sustainable activities such as community-based ecotourism.