Ocean News

Heat-Resistant Corals Provide Clues to Climate Change Survival

16th January 2013

Coral reefs are instrumental to the health of the marine environment. They are home to 25% of all marine life, and provide important ecosystem services. They are also notoriously susceptible to the effects of climate change. Increasing ocean acidity, combined with rising temperatures, is killing corals at an alarming rate. Now a recent study opens a window into a genetic process that allows some corals to withstand unusually high temperatures and may hold a key to species survival for organisms around the world.

Although researchers have observed that certain corals withstand stresses better than others, the molecular mechanisms behind this enhanced resilience remain unclear. For their study, Palumbi, lead author Daniel Barshis, a Stanford postdoctoral scholar, and other researchers looked at shallow-reef corals off Ofu Island in American Samoa to determine how they survive waters that often get hotter than 32 degrees Celsius / 90 degrees Fahrenheit during summer-time low tides.

Utilizing cutting edge DNA sequencing technology, the scientists examined the corals’ gene expression when subjected to water temperatures up to 35 degrees Celsius / 95 degrees Fahrenheit. “These technologies are usually applied to human genome screens and medical diagnoses, but we’re now able to apply them to the most pressing questions in coral biology, like which genes might help corals survive extreme heat,” said Barshis.

Heat-resistant and heat-sensitive corals had a similar reaction to experimental heat: hundreds of genes “changed expression” or turned on to reduce and repair damage. However, the heat-resistant corals showed an unexpected pattern: 60 heat stress genes were already turned on even before the experiment began. These genes are “frontloaded” by heat resistant corals – already turned on and ready to work even before the heat stress began. “It’s like already having your driver’s license and boarding pass out when you get close to the TSA screener at the airport, rather than starting to fumble through your wallet once you get to the front of the line,” Palumbi said.

The findings show that DNA sequencing can offer broad insights into the differences that may allow some organisms to persist longer amid future changes to global climate. “We’re going to put a lot of effort into protecting coral reefs, but what happens if we wake up in 30 years and all our efforts are in vain because those corals have succumbed to climate change,” Palumbi said.

Learn more about the effects of climate change and habitat destruction on corals and the rest of the marine environment.